

3A, 6.5V, Ultra Low Noise, Ultra Low Dropout Linear Regulator

Purpose

The RTQ2503S is a high-current (3A), low-noise (4.4µVrms), high accuracy (1% over line, load, andtemperature), low-dropout linear regulator (LDO) capableof sourcing 3A with only maximum 180mV dropout. This document explains the function and use of the RTQ2503S evaluation board (EVB), and provides information to enable operation, modification of the evaluation board and circuit to suit individual requirements.

Table of Contents

Purpose	. 1
Introduction	. 2
Key Performance Summary Table	. 2
Bench Test Setup Conditions	. 3
Schematic, Bill of Materials & Board Layout	. 7
More Information	10
mportant Notice for Richtek Evaluation Board	10

Introduction

General Product Information

The RTQ2503S is a high-current (3A), low-noise (4.4µVrms), high accuracy (1% over line, load, and temperature), low-dropout linear regulator (LDO) capable of sourcing 3A with only maximum 180mV dropout. The device output voltage is pin-selectable (up to 3.95V) using a PCB layout without the need of external resistors, thus reducing overall component count. Designers can achieve higher output voltage with the use of external resistor divider. The device supports single input supply voltage as low to 1.1V that makes it easy to use.

The low noise, high PSRR and high output current capability makes the RTQ2503S ideal to power noise-sensitive devices such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), and RF components. With very high accuracy, remote sensing, and soft-start capabilities to reduce inrush current, the RTQ2503S is ideal for powering digital loads such as FPGAs, DSPs, and ASICs.

The external enable control and power good indicator function makes the sequence control easier. The output noise immunity is enhanced by adding external bypass capacitor on NR/SS pin. The device is fully specified over the temperature range of $T_J = -40^{\circ}$ C to 125°C and is offered in a WQFN-20L 3.5x3.5 package.

Product Feature

- Input Voltage Range : 1.1V to 6.5V
- Two Output Voltage Modes
 - ▶ 0.8V to 5.5V (Set by a Resistive Divider)
 - ▶ 0.8V to 3.95V (Set via PCB Layout, No ExternalResistor Required)
- Accurate Output Voltage Accuracy (1%) Over Line, Load and Temperature
- Ultra High PSRR : 40dB at 500kHz
- Excellent Noise Immunity
 - ► 4.4µV_{RMS} at 0.8V Output
 - ► 7.7µV_{RMS} at 5.0V Output
- Ultra Low Dropout Voltage : 180mV at 3A
- Enable Control
- Programmable Soft-Start Output
- Stable with a 47µF or Larger Ceramic Output Capacitor
- Support Power-Good Indicator Function

Key Performance Summary Table

Key Features	Evaluation Board Number : PCB100_V1
Default Input Voltage	$1.1 \text{V} \leq (\text{V}_{\text{OUT}} + 0.3 \text{V}) \leq \text{V}_{\text{IN}} \leq 6.5 \text{V}$
Max Output Current	3A
Default Output Voltage	1.5V, pin6 (100mV), pin7 (200mV) and pin9 (400mV) is tie to GND by JP3.
Default Marking & Package Type	RTQ2503SGQW, WQFN-20L 3.5x3.5

Bench Test Setup Conditions

Headers Description and Placement

Carefully inspect all the components used in the EVB according to the following Bill of Materials table, and then make sure all the components are undamaged and correctly installed. If there is any missing or damaged component, which may occur during transportation, please contact our distributors or e-mail us at evb_service@richtek.com.

Test Points

The EVB is provided with the test points and pin names listed in the table below.

Pin name	est points)
VOUT LDO output LDO output terminal. A 22µF or greater of capacitant pin is required for stability.	ce is at VOUT
VIN LDO input source LDO input terminal. Supply source available is (V _{OUT} ≤ 6.5 V.	+ 0.3V) \leq V _{IN}
EN (Test pin)Enable test pointEnable control input. Connecting this pin to logic hig regulator or driving this pin low puts it into shutdown m the device after VIN are present is preferred.	h enables the ode. Enabling
GRND Ground Ground. The exposed pad must be soldered to a la connected to GND for maximum the power dissipation	arge PCB and
PG (Test pin)Power good indicator outputAn open-drain output and active high when the or reaches 88% of the target. The pin is pulled to grou output voltage is lower than its specified threshold, I OCP and OTP.	output voltage und when the EN shutdown,
50mV, 100mV, 200mV, 400mV, 800mV, 1.6VOutput voltage setting pinsConnect these pins to ground or leave floating. Complexed pins to ground increases the output voltage by the voltage pins to ground increases the output voltage by the voltage pins to ground increases the output voltage by the voltage pins to ground increases the output voltage by the voltage pins to ground increases the output voltage by the voltage pins to ground increases the output voltage by the voltage pins to ground increases the output voltage by the voltage pins to ground increases the output voltage by the voltage pins to ground increases the output voltage by the voltage pins to ground increases the output voltage by the voltage pins to ground increases the output voltage by the voltage pins to ground increases the output voltage by the voltage pins to ground increases the output voltage by the voltage pins to ground increases the output voltage by the voltage pins to ground increases the output voltage by the voltage pins to ground increases the output voltage by the voltage pins to ground increases the output voltage by the voltage pins to ground increases the output voltage. Leave these pins floating the voltage is set by external resistor.	necting these alueof the pin ed to GND to pating (open) if
VOUT-sense (Test pin)Output voltage test pointLDO output voltage level monitoring point.	
VIN (Test pin) Input voltage test point LDO input supply voltage monitoring point.	

RICHTEK your power partner.

Output Voltage Setting

The output voltage of the RTQ2503S can be set by external resistors or by output voltage setting pins (50mV, 100mV, 200mV, 400mV, 800mV and 1.6V) to achieve different output target.

1. Setting output target by pins (50mV, 100mV, 200mV, 400mV, 800mV and 1.6V) :

The RTQ2503S also can short the pins pins (50mV, 100mV, 200mV, 400mV, 800mV and 1.6V) to ground and program the regulated output voltage level without external resistors after SNS pin is connected with VOUT pin .The pins pins (50mV, 100mV, 200mV, 400mV, 800mV and 1.6V) is connected with internal resistor pairs, each pin is either connected to ground (active) or left open (floating).

The voltage programming is set as the sum of the internal reference voltage ($V_{REF} = 0.8V$) plus the accumulated sumof the respective voltages assigned to each active pin as illustrated in Figure 1.

Figure 1. Output Setting without External Resistors

Table 1. summarizes these voltage values associated witheach active pin setting for reference. By leaving all programpins open, or floating, the output is thereby programmedto the minimum possible output voltage equal to V_{REF} (0.8V). The maximum output target can be supported up to 3.95V after all pins pins (50mV, 100mV, 200mV, 400mV, 800mV and 1.6V) are shorted with groundat the same time.

RICHTEK your power partner.

RTQ2503SGQW Evaluation Board

Table 1. V	/OUT Select Pin	Settings for	Different	Target
------------	-----------------	--------------	-----------	--------

V _{OUT} (V)	50mV	100mV	200mV	400mV	800mV	1.6V	V _{OUT} (V)	50mV	100mV	200mV	400mV	800mV	1.6V
0.8	Open	Open	Open	Open	Open	Open	2.4	Open	Open	Open	Open	Open	GND
0.85	GND	Open	Open	Open	Open	Open	2.45	GND	Open	Open	Open	Open	GND
0.9	Open	GND	Open	Open	Open	Open	2.5	Open	GND	Open	Open	Open	GND
0.95	GND	GND	Open	Open	Open	Open	2.55	GND	GND	Open	Open	Open	GND
1	Open	Open	GND	Open	Open	Open	2.6	Open	Open	GND	Open	Open	GND
1.05	GND	Open	GND	Open	Open	Open	2.65	GND	Open	GND	Open	Open	GND
1.1	Open	GND	GND	Open	Open	Open	2.7	Open	GND	GND	Open	Open	GND
1.15	GND	GND	GND	Open	Open	Open	2.75	GND	GND	GND	Open	Open	GND
1.2	Open	Open	Open	GND	Open	Open	2.8	Open	Open	Open	GND	Open	GND
1.25	GND	Open	Open	GND	Open	Open	2.85	GND	Open	Open	GND	Open	GND
1.3	Open	GND	Open	GND	Open	Open	2.9	Open	GND	Open	GND	Open	GND
1.35	GND	GND	Open	GND	Open	Open	2.95	GND	GND	Open	GND	Open	GND
1.4	Open	Open	GND	GND	Open	Open	3	Open	Open	GND	GND	Open	GND
1.45	GND	Open	GND	GND	Open	Open	3.05	GND	Open	GND	GND	Open	GND
1.5	Open	GND	GND	GND	Open	Open	3.1	Open	GND	GND	GND	Open	GND
1.55	GND	GND	GND	GND	Open	Open	3.15	GND	GND	GND	GND	Open	GND
1.6	Open	Open	Open	Open	GND	Open	3.2	Open	Open	Open	Open	GND	GND
1.65	GND	Open	Open	Open	GND	Open	3.25	GND	Open	Open	Open	GND	GND
1.7	Open	GND	Open	Open	GND	Open	3.3	Open	GND	Open	Open	GND	GND
1.75	GND	GND	Open	Open	GND	Open	3.35	GND	GND	Open	Open	GND	GND
1.8	Open	Open	GND	Open	GND	Open	3.4	Open	Open	GND	Open	GND	GND
1.85	GND	Open	GND	Open	GND	Open	3.45	GND	Open	GND	Open	GND	GND
1.9	Open	GND	GND	Open	GND	Open	3.5	Open	GND	GND	Open	GND	GND
1.95	GND	GND	GND	Open	GND	Open	3.55	GND	GND	GND	Open	GND	GND
2	Open	Open	Open	GND	GND	Open	3.6	Open	Open	Open	GND	GND	GND
2.05	GND	Open	Open	GND	GND	Open	3.65	GND	Open	Open	GND	GND	GND
2.1	Open	GND	Open	GND	GND	Open	3.7	Open	GND	Open	GND	GND	GND
2.15	GND	GND	Open	GND	GND	Open	3.75	GND	GND	Open	GND	GND	GND
2.2	Open	Open	GND	GND	GND	Open	3.8	Open	Open	GND	GND	GND	GND
2.25	GND	Open	GND	GND	GND	Open	3.85	GND	Open	GND	GND	GND	GND
2.3	Open	GND	GND	GND	GND	Open	3.9	Open	GND	GND	GND	GND	GND
2.35	GND	GND	GND	GND	GND	Open	3.95	GND	GND	GND	GND	GND	GND

2. Using external resistors

The output voltage is determined by the values of R1, R2 and keeps SNS pin be floating as Figure 2. The values of R1 and R2 can be calculated with any voltage value via use the formula by below equation and the suggested R1, R2 resistance is $(R1 + R2) < 50k\Omega$:

$$V_{OUT} = 0.8 \times \frac{R1 + R2}{R2}$$

The suggested R1, R2 resistance is $(R1 + R2) \le 50k\Omega$, the VOUT target range should be lower than $(V_{IN} - 0.3V)$ for good load transient response and output regulation ability.

Figure 2. Output Voltage Set by External Resistors

Power-up & Measurement Procedure

- 1. Set the desired VOUT target value by JP6 that pull low the pins (50mV, 100mV, 200mV, 400mV, 800mV and 1.6V) with specific combination (reference the Table 1).
- 2. Connect input power ($1.1V \le V_{OUT} + 0.3V \le V_{IN} \le 6.5V$) and input ground to VIN and GND test pins respectively.
- 3. Connect positive end and negative terminals of load to VOUT and GND test pins respectively.
- 4. There is a 3-pin header "EN" for enable control. To use a jumper at "VIN" option to tie EN test pin to input power VIN for enabling the device. Inversely, to use a jumper at "GND" option to tie EN test pin and ground GND for disabling the device.
- 5. Verify the output voltage level between VOUT and GND.
- 6. Connect an external load up to 3A to the VOUT and GND terminals and verify the output voltage and current.

Schematic, Bill of Materials & Board Layout

EVB Schematic Diagram

Bill of Materials

Reference	Qty	Part Number	Description	Package	Manufacturer
U4	1	RTQ2503SGQW	Linear Regulator	WQFN-20L 3.5x3.5	RICHTEK
CFF, C-NR/SS	2	0603B103K500CT	10nF/50V/X7R	C-0603	WALSIN
CEN	1	C1608X7R1H104K080AA	100nF/50V/X7R	C-0603	TDK
C2	1	GRM32ER61C476KE15L	47µF/16V/X5R	C-1210	Murata
C5	1	GRM32ER61C226KE20L	22µF/16V/X5R	C-1210	Murata
R-SNS	1	WR06X000PTL	0	R-0603	WALSIN
REN1	1	WR06X1002FTL	10k	R-0603	WALSIN
RPG	1	WR06X1003FTL	100k	R-0603	WALSIN

PCB Layout

Top View (1st layer)

PCB Layout—Inner Side (2nd Layer)

PCB Layout—Inner Side (3rd Layer)

Bottom View (4th Layer)

More Information

For more information, please find the related datasheet or application notes from Richtek website <u>http://www.richtek.com</u>.

Important Notice for Richtek Evaluation Board

THIS DOCUMENT IS FOR REFERENCE ONLY, NOTHING CONTAINED IN THIS DOCUMENT SHALL BE CONSTRUED AS RICHTEK'S WARRANTY, EXPRESS OR IMPLIED, UNDER CONTRACT, TORT OR STATUTORY, WITH RESPECT TO THE PRESENTATION HEREIN. IN NO EVENT SHALL RICHTEK BE LIABLE TO BUYER OR USER FOR ANY AND ALL DAMAGES INCLUDING WITHOUT LIMITATION TO DIRECT, INDIRECT, SPECIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES.